Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1212559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426985

RESUMO

Introduction: Over four billion people around the world rely on bread wheat (Triticum aestivum L.) as a major constituent of their diet. The changing climate, however, threatens the food security of these people, with periods of intense drought stress already causing widespread wheat yield losses. Much of the research into the wheat drought response has centred on the response to drought events later in development, during anthesis or grain filling. But as the timing of periods of drought stress become increasingly unpredictable, a more complete understanding of the response to drought during early development is also needed. Methods: Here, we utilized the YoGI landrace panel to identify 10,199 genes which were differentially expressed under early drought stress, before weighted gene co-expression network analysis (WGCNA) was used to construct a co-expression network and identify hub genes in modules particularly associated with the early drought response. Results: Of these hub genes, two stood out as novel candidate master regulators of the early drought response - one as an activator (TaDHN4-D1; TraesCS5D02G379200) and the other as a repressor (uncharacterised gene; TraesCS3D02G361500). Discussion: As well as appearing to coordinate the transcriptional early drought response, we propose that these hub genes may be able to regulate the physiological early drought response due to potential control over the expression of members of gene families well-known for their involvement in the drought response in many plant species, namely dehydrins and aquaporins, as well as other genes seemingly involved in key processes such as, stomatal opening, stomatal closing, stomatal morphogenesis and stress hormone signalling.

2.
Plant J ; 115(3): 614-626, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37077043

RESUMO

Triticum aestivum L. (bread wheat) is a crop relied upon by billions of people around the world, as a major source of both income and calories. Rising global temperatures, however, pose a genuine threat to the livelihood of these people, as wheat growth and yields are extremely vulnerable to damage by heat stress. Here we present the YoGI wheat landrace panel, comprising 342 accessions that show remarkable phenotypic and genetic diversity thanks to their adaptation to different climates. We quantified the abundance of 110 790 transcripts from the panel and used these data to conduct weighted co-expression network analysis and to identify hub genes in modules associated with abiotic stress tolerance. We found that the expression of three hub genes, all heat-shock proteins (HSPs), were significantly correlated with early thermotolerance in a validation panel of landraces. These hub genes belong to the same module, with one (TraesCS4D01G207500.1) being a candidate master-regulator potentially controlling the expression of the other two hub genes, as well as a suite of other HSPs and heat-stress transcription factors (HSFs). In this work, therefore, we identify three validated hub genes, the expression of which can serve as markers of thermotolerance during early development, and suggest that TraesCS4D01G207500.1 is a potential master regulator of HSP and HSF expression - presenting the YoGI landrace panel as an invaluable tool for breeders wishing to determine and introduce novel alleles into modern varieties, for the production of climate-resilient crops.


Assuntos
Termotolerância , Termotolerância/genética , Triticum/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética
3.
Front Plant Sci ; 14: 1252885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235195

RESUMO

Introduction: Climate change is likely to lead to not only increased global temperatures but also a more variable climate where unseasonal periods of heat stress are more prevalent. This has been evidenced by the observation of spring-time temperatures approaching 40°C in some of the main spring-wheat producing countries, such as the USA, in recent years. With an optimum growth temperature of around 20°C, wheat is particularly prone to damage by heat stress. A warming climate with increasingly common fluctuations in temperature therefore threatens wheat crops and subsequently the lives and livelihoods of billions of people who depend on the crop for food. To futureproof wheat against a variable climate, a better understanding of the response to early heat stress is required. Methods: Here, we utilised DESeq2 to identify 7,827 genes which were differentially expressed in wheat landraces after early heat stress exposure. Candidate hub genes, which may regulate the transcriptional response to early heat stress, were identified via weighted gene co-expression network analysis (WGCNA), and validated by qRT-PCR. Results: Two of the most promising candidate hub genes (TraesCS3B02G409300 and TraesCS1B02G384900) may downregulate the expression of genes involved in the drought, salinity, and cold responses-genes which are unlikely to be required under heat stress-as well as photosynthesis genes and stress hormone signalling repressors, respectively. We also suggest a role for a poorly characterised sHSP hub gene (TraesCS4D02G212300), as an activator of the heat stress response, potentially inducing the expression of a vast suite of heat shock proteins and transcription factors known to play key roles in the heat stress response. Discussion: The present work represents an exploratory examination of the heat-induced transcriptional change in wheat landrace seedlings and identifies several candidate hub genes which may act as regulators of this response and, thus, may be targets for breeders in the production of thermotolerant wheat varieties.

4.
Gene ; 815: 146130, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35017035

RESUMO

Maf1 is a transcription factor that is conserved in sequence and structure between yeasts, animals and plants. Its principal molecular function is also well conserved, being to bind and repress RNA polymerase (pol) III, thereby inhibiting synthesis of tRNAs and other noncoding RNAs. Restrictions on tRNA production and hence protein synthesis can provide a mechanism to preserve resources under conditions that are suboptimal for growth. Accordingly, Maf1 is found in some organisms to influence growth and/or stress survival. Because of their sessile nature, plants are especially vulnerable to environmental changes and molecular adaptations that enhance growth under benign circumstances can increase sensitivity to external challenges. We tested if Maf1 depletion in the model plant Arabidopsis affects growth, pathogen resistance and tolerance of drought or soil salinity, a common physiological challenge that imposes both osmotic and ionic stress. We find that disruption of the Maf1 gene or RNAi-mediated depletion of its transcript is well-tolerated and confers a modest growth advantage without compromising resistance to common biotic and abiotic challenges.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Domínio MADS/genética , Estresse Fisiológico/genética , Arabidopsis/crescimento & desenvolvimento , Botrytis/patogenicidade , Regulação da Expressão Gênica de Plantas , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , Salinidade , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...